Monday, April 22, 2024

The Best of Us

It’s no secret that the military is struggling.  Recruiting is in the tank.[1]  Readiness is near zero.  Maintenance is non-existent.  Gender, diversity, and environmental concerns dominate over warfighting.  The Secretary of Defense has listed climate as one of the top priorities.[3]  The fleet is shrinking despite the Navy stating that a war with China is imminent.  Ships are being retired decades early due to poor planning (LCS, MLP, AFSB, etc.).  Our reserve fleet is nearly non-existent.  Unbelievably, the Army is looking to recall retirees to active duty.[2]
 
The Army has launched far-reaching reforms that will transform how it attracts and recruits new soldiers, its top leaders said in a press conference today.
 
The moves come after the service failed to meet its recruiting targets for two consecutive fiscal years, which caused its end strength to fall from an original level of 485,000 in late 2021 to around 452,000 active duty soldiers today — its smallest full-time force since 1940, the year before the U.S. entered World War II.[1]

All these problems stem from the quality of the people populating the military.  These kinds of problems don’t just happen like the common cold.  They’re the result of decisions by people.  Bad decisions.  Cowardly decisions.  Stupid decisions.  Traitorous decisions.  Criminal decisions.
 
It’s the quality of our people and the quality of our decision making people is extremely poor.
 
What’s our solution?  Lower standards, of course!  We’re now looking to accept people who failed to pass high school.  We’re now looking to accept people with drug problems.  We’re looking to bring back retirees.  We’re looking to increase the proportion of women.  And so on.
 
Why are we not only accepting poor quality people into the military but actively seeking them out?  It’s because we’ve made the [bad, stupid] decision to purge the best of our personnel in the name of gender, diversity, and social representation.
 
Can you name the one organization in the country that is not, should not, and indeed, cannot be representative of society at large?  It’s the military.
 
Representative is another way of saying ‘average’.  A representative military would be the average of our society.  Do we really want our military to be average?  Of course not!  The military should be better than our average.  It should be the best of our society.  The military needs the best traits from our society and those traits are not present in the average of our society.  We want, and need, people who are stronger, braver, more focused, more aggressive, more combative, more patriotic, and have greater fortitude, integrity, and honor than society at large.  Sadly – and realistically – those traits are not present in equal proportion among all sub-groups in society.  Females, for example, do not embody most of those traits.  That doesn’t mean they can’t serve admirably in certain, limited functions but they are not the ones we want for combat.
 
We need to remember that the military should be the best of our society not the average.  It needs to embody characteristics that are not necessarily prevalent in society or in all sub-groups.  By definition, that means that the military will not, and cannot, be representative of society at large.  We need to recognize and embrace that concept and then recruit those individuals and groups that have those characteristics. 
 
 
 
________________________________

Wednesday, April 17, 2024

Damn the Facts – Full Speed Ahead

Remember the recent announcement about diesel engines operating unattended for 30 straight days and how smugly proud the Navy and manufacturer were?  Except, it turned out that the engines didn’t run continuously.  They were allowed to stop as frequently as they needed as long as no human intervened.
 
Well, we have more of the same as NavSea proudly bragged about its unmanned vessels
 
… Capt. Searles [Capt. Scot Searles, Programme Manager, Unmanned Maritime Systems] explained how USVs performed under the supervision of crews during the Integrated Battle Problem (IBP) 23.2 multi-domain unmanned capabilities exercise under U.S. Pacific Fleet’s Experimentation Plan. During the exercise, which concluded in January 2024, four USVs – Mariner, Ranger, Seahawk, and Sea Hunter – traveled a combined 46,651 nautical miles to make port visits to Pearl Harbor, Papua New Guinea, Yokosuka (Japan), and Sydney (Australia).[1]

So, unmanned vessels managed to sail to various ports, as opposed to actual combat operations under realistic conditions.  Still, nearly 47,000 nm unattended … impressive?
 
Well, it’s not quite what you think.  It turns out there was LOTS of human intervention.
 
IBP 23.2 has allowed the USN to identify 157 distinct human interventions – I.e., crew stopping the USV – due to on vessel issues. That is equivalent to one intervention every 28 hours. However, of those interventions over two thirds were related to issues with Government Furnished Equipment (GFE) C4I systems (reloading crypto or losing crypto synchronization) or were done for operator convenience (take control of the system to go faster or slower than autonomous navigation). Of the remaining 48 human interventions, only 17 interventions were done for sensing and perception issues, and of those only 9 related to concerns with maneuvering decisions from the autonomous system.[1][emphasis added]

The Navy’s conclusion?  Everything’s wonderful according to Capt. Searles.
 
“This all puts the meantime between human interventions for autonomy at once every 4 days but under good weather conditions (I.e., not chasing false contacts) it is more like once every 12 days,” Capt. Searles concluded.
 
“As such, autonomy reliability requires interventions only once every 12 days and HM&E only once every 17 days, so we are very pleased with performance of systems but also happy that we are finding limits and getting those limits addressed.”[1]

So … the Navy discounts most interventions in order to contrive more favorable statistics and then further twists the data by conditioning it on ‘good weather conditions’.  That seems fair.  I mean, most combat occurs only in good weather, right?  And the oceans are famous for good weather so what could go wrong?
 
It doesn’t really matter why an intervention took place;  it only matters that it did.  The fact is that a human intervention was required once every 28 hours by the Navy’s own accounting … and I’m betting that it occurred more often than that but was deemed insignificant and wasn’t reported.  Regardless, human intervention every 28 hours is not exactly the dream of unattended operation for weeks and months on end, is it?  In fact, what this exercise proved is that unmanned operations are not yet feasible.
 
 
 
________________________________
 
[1]Naval News website, “SAS 2024: NAVSEA’s Unmanned Maritime Systems Update”, Alix Valenti, 15-Apr-2024,
https://www.navalnews.com/event-news/sea-air-space-2024/2024/04/sas-2024-navseas-unmanned-maritime-systems-update/

Monday, April 15, 2024

Precision Guided Stupidity

ComNavOps has long decried the US (and, to be fair, the Western World) emphasis on precision guided munitions (PGM), believing that dependence on such weapons is a fool’s path (see, “Saturation Firepower”).  Why?  Because another word for precision guidance is expensive.  Because another word for precision guidance is scarce.  Because another word for precision guidance is unreliable.
 
ComNavOps, of course, is wise and knows all but how can the rest of the world be assured that ComNavOps is right?  The answer is by looking at the Ukraine-Russia war. 
 
Both sides have used precision guided weapons and what has it achieved?  Nothing. 
 
What has the US policy of supplying precision weapons to Ukraine demonstrated?  That in a real war we’ll run out of PGMs in short order and we lack the industrial capacity to replace them in any useful time frame.
 
The main weapon on both sides is dumb artillery with both sides expending tens of thousands of rounds per day, if reports can be believed.  That should be telling us something.
 
 
Conclusion
 
The conclusion is stunningly obvious:  we cannot wage a major war with PGMs as our main weapon.  If supplying Ukraine has depleted our PGM inventories and strained our industrial capacity beyond the ability to resupply in a useful time frame, how much worse will it be when we engage China?  We’ll expend ten thousand PGMs in the first week and then … we’ll be out of PGMs and China will be 99% unaffected.  What do we do then?
 
Our current production capacity for PGMs is something on the order of a hundred weapons per year per weapon type.  In a war, our expenditure rate will be something on the order of a hundred (or thousands or tens of thousands) weapons per day.  Do you see the gaping mismatch between expenditure and production?
 
We need weapons that can be produced at a rate of thousands per day (or more!) at an affordable cost.  You wage war with industrial capacity not a handful of PGMs.
 
Fool's Weapons


We need to end this worship of PGMs which are a weapon suited for the luxury of peacetime usage and production rates.  They are not a major war weapon.  Sure, I’ll gladly take any that are available but not at the expense of production rates and unaffordable costs.
 
ComNavOps is always cautioning about drawing lessons from Ukraine-Russia but this lesson is crystal clear.

Friday, April 12, 2024

F-35 Software Case Study

We’ve come to recognize that software has become the major stumbling block in weapon systems development, even more so than construction and physical performance issues (see, “The Heartbreak of Software”).
 
As you know, the F-35 was delivered in a non-combat capable condition due to software limitations.  The full-combat capable software was planned to be delivered in Block increments as listed below.
 
Blocks 1A and 1B - initial pilot training and multi-level security
Block 2A - improved training capabilities
Block 2B – basic air-to-air combat capability;  basic air-to-ground combat capability
Block 3i – Block 2B plus new hardware to support USAF IOC
Block 3F - full flight envelope and baseline combat capabilities; began 2018 and completed 2023
Block 4 – full weapons (17 new weapons) and ESM capabilities;  pending;  requires Technology Refresh 3 (TR-3)
 
Block 4 is the full combat capability version.  See Forbes[2] for a good discussion of the Block 4 upgrade but note the 2022 time of the report.  Today, Block 4 is still pending despite many of its features having been deleted and pushed into some nebulous future date land where they will languish forever and never get implemented.  Thus, even the dumbed down version of Block 4 cannot be delivered in a timely manner, being years overdue, already, and still years in the future.
 
We now have yet another example of major software problems in the software-cursed F-35.  Technology Refresh 3 (TR-3) upgrade which is required to implement the dumbed down Block 4 and make the F-35 fully combat capable has encountered major software problems resulting in the military halting acceptance of new aircraft.
 
Since July 2023, the Pentagon has refused to accept newly built F-35s due to software woes with the TR-3 upgrade, which has slipped numerous times past its original fielding date expected for April 2023.[1]
 
Problems with an upgrade installed on some Lockheed Martin F-35 Joint Strike Fighters rolling off the production line have now disrupted plans to incorporate those upgrades on existing aircraft, and the F-35 Joint Program Office does not have a date for when those jets will get the much-anticipated retrofits.[1]
 
The F-35 program “was scheduled to begin TR-3 [Technology Refresh 3] retrofits in April 2024 with the intent to modify 149 aircraft over the subsequent 12-month period,” JPO spokesperson Russ Goemaere told Breaking Defense. But now, “[t]he Program is working closely with F-35 customers to establish a new start date for those modifications based on a number of factors including software and supply chains.[1]
 
TR-3 — which features a more powerful processor, greater memory and a panoramic cockpit display that collectively enable a suite of new capabilities known as Block 4 … [1]
TR-3 began being installed in new production aircraft with Lot 15.
 
 
The military’s solution? 
“Very capable TR-2 jets will continue to fly operational missions while awaiting the start of TR-3 retrofits.”[1]
I’m sorry but no.  F-35s with TR-2/Block 3x are not ‘very capable’.  They lack most of the weapons and sensor capability required for full combat capability.
 
To provide some perspective, the F-35 has been in production since 2008-9.  That’s 16 years and we still don’t have full combat-capable aircraft due to software delays.  Just as we’ve begun retiring LCSes without them ever having had fully functional modules installed, we may see F-35s retire without ever having been fully combat capable.
 
We have got to start recognizing that software is now the primary obstacle in weapon system development and we need to modify how we approach program management and software development.
 
 
 
_____________________________________
 
[1]Breaking Defense, “Pentagon delays F-35 retrofits amid upgrade woes”, Michael Marrow, 4-Apr-2024,
https://breakingdefense.com/2024/04/pentagon-delays-f-35-retrofits-amid-upgrade-woes/
 
[2]Forbes, “Inside Block 4—The Mostly Secret Plan For Making The F-35 Fighter Even More Lethal”, Loren Thompson, 14-Nov-2022,
https://www.forbes.com/sites/lorenthompson/2022/11/14/inside-block-4-the-mostly-secret-plan-for-making-the-f-35-fighter-even-more-lethal/?sh=3a0dc3184423

Tuesday, April 9, 2024

LRASM Testing

How many new weapon systems work perfectly (or even moderately well) in their first combat test?  The answer, of course, is none.  That’s why it’s so important to conduct as realistic testing as possible of new weapon systems and to test according to the way you anticipate using the weapon.
 
For example, the Navy’s ‘new’ AGM-158C Long Range Anti-Ship Missile (LRASM) will be used in massed attacks of hundreds of missiles when attacking a Chinese surface or carrier group.  Anything less will be an unsuccessful waste of time, resources, and opportunities.  Therefore, we’ve undoubtedly been conducting tests using many dozens of missiles to prove out the concept and uncover the hidden problems – because, of course, there are always hidden problems.

LRASM


The LRASM program began in 2009 so now, 15 years later, the weapon must be pretty thoroughly tested and debugged … right?  Well, let’s check in on the latest test.
 
The U.S. Navy in partnership with Lockheed Martin successfully conducted a historic Long-Range Anti-Ship Missile (LRASM) flight test with four missiles simultaneously in flight.

Four missiles?  Four?  Four??????  4????????  Fifteen years into the program?!  We’re going to use these in volleys of many dozens or hundreds.  Fifteen years later we’re now proudly testing four missiles … apparently for the first time ever?
 
What happens when we launch seventy or a hundred missiles simultaneously?  Will they co-exist in the same airspace or will they collide as they conduct their individual maneuvers and respond to variations in wind speed, direction, turbulence, and engine wash from the surrounding missiles?  Can we apply mid-course guidance updates to that many missiles in the same small airspace or will the signals get lost, interfered, or mixed up?  Can the weapon’s sensors function with that many other missiles around?  How big of a radar return will that many missiles generate?  These are supposed to be somewhat stealthy missiles but will that many missiles just provide an easy detection for enemy sensors or can the aggregate remain stealthy despite being a giant ‘ball’ of missiles?
 
Four????  There are always unanticipated problems.  Four????
 
So, how does the Navy think the test went?  I’ll bet it was flawless.
 
During the 12th Integrated Test Event (ITE-12), the U.S. Navy was able to demonstrate the weapon’s inherent high-end lethality from mission planning through kill chain integration and its effects on the target. All mission objectives were met … [1]

When are all mission objectives ever not met according to Navy and contractor announcements?
 
The LRASM program has been in existence for 15 years and this is the 12th test???  Assuming each previous test involved just one missile, as suggested by the breathless excitement of this announcement about multiple missiles, that means we’ve tested just 11 missiles in 15 years and, likely, the majority of those tests didn’t involve actual missile performance but were things like captive carry tests, pylon separation tests, telemetry/comms tests, and so forth.  How many actual, end to end tests have been conducted?  I can’t find any data but it’s probably just a few.
 
So, to repeat, how many new systems fail their first combat test?  All of them plus, now, this one, for sure.
 
 
 
________________________________
 
[1]Naval News website, “Lockheed Martin Conducts Test With 4 LRASM In Flight”, Naval News staff, 3-Apr-2024,
https://www.navalnews.com/naval-news/2024/04/lockheed-martin-conducts-test-with-4-lrasm-in-flight/

Friday, April 5, 2024

Constellation Lies

How’s that Constellation frigate construction coming?  Time to check in.
 
 
Schedule
 
Here’s two statements:
 
  • In January of 2024, SecNav Del Toro reported that the Constellation might be delayed a year.[1]
  • In April of 2024, USNI News now reports that the Constellation may be delayed up to three years.[1]
 
What happened in three months to add an additional two year delay?
 
 
Design
 
Well, at least the Navy has learned from past shipbuilding mistakes related to concurrency and will never start another ship construction program again without a complete design … right?  Right????
 
Well … 
In August of 2022, when the Navy green lit Fincantieri to begin building the first frigate, Rear Adm. Casey Moton, then the program executive officer for unmanned and small combatants, said the detail design was just over 80 percent complete.[1]
So … the start of construction and another incomplete design.  I guess the Navy is incapable of learning a lesson.  But wait … it gets better.
 
That 80% design completion status as of Aug 2022 … 
… Naval Sea Systems Command chief Vice Adm. James Downey told reporters that the detail design for the frigate – which is based on Fincantieri Marinette Marine’s FREMM parent design that’s in service with the Italian and French navies – still isn’t complete. The goal is to finalize the detail design this year and the service and contractors are nearing 80 percent completion, Downey said.[1]
Now, two years after the design was reported to be 80% complete, the Navy is now reporting that the design is nearing 80%!!!!!  That’s right!  In two years the design has regressed from 80% to nearing 80%.  The design has actually gone backward!  Only in the Navy!
 
 
Commonality
 
Wasn’t the whole point of the ‘parent design’ to minimize changes, time, and cost by using an existing design?  Of course it was!  There must be … what would you guess … 95% commonality?  90%?  Maybe 85%, worst case?  Read this: 
While the design was based on a long-serving warship, design agent Gibbs & Cox heavily modified the FREMM design to meet NAVSEA requirements, like tougher survivability standards than those of European navies, Navy officials have told USNI News. 
At one point the Constellation design shared about 85 percent commonality with the original FREMM design, but the alterations have brought that commonality down to under 15 percent, a person familiar with the changes told USNI News.[1][emphasis added]
Less than 15% commonality?????  What was the point of the existing parent design requirement?
 
 
Conclusion
 
Let’s face it.  The Navy out and out lied about the parent design concept and used it as a transparent gambit to slip a new ship design by a skeptical Congress.
 
Now, as with any completely new ship design, we’re seeing cost increases, concurrency, and huge schedule delays. 



____________________________

Wednesday, April 3, 2024

Patria NEMO Mortar

There is a constant call from some naval observers to mount land weapons on boats and small vessels as a substitute for proper naval gun support.  Weapons of choice include MLRS and mortars, among others.
 
The reality is that most attempts to adapt land weapons to naval use have failed for various reasons.  For example, the Germans attempted to mount a MONARC self-propelled howitzer turret on a frigate but the adaptation to the corrosive maritime environment proved more difficult than anticipated and the program was cancelled.[3]
 
Maritime adaptation issues aside, one has to wonder what the concept of operations (CONOPS) is for these kinds of weapons on small boats.  For example, the Patria NEMO 120 mm smooth bore mortar has been mounted on small boats.  Currently, six UAE Ghannatha fast troop transport boats each have a single NEMO mortar.
 
NEMO Mortar on Ghannatha Boat

Let’s consider that example.
 
The UAE boats are very small at 27 m (88 ft) and have a GEM elettronica coastal surveillance radar.
 
The NEMO mortar has a 3 m barrel and is claimed to be compatible with any standard or GPS-guided 120 mm smoothbore round.  As an example, the NAMMO 120 mm High Explosive Round has a 2.2 kg (4.8 lb) explosive weight in a 13 kg (28.6 lb) shell.[1] 
 
The mortar has a range of around 10 km (6 miles), sustained rate of fire = 6 rds/min, and a magazine of typically 50-60 rds.[2]
 
Fire control requires a forward observer.
 
 
Discussion
 
What is the CONOPS for a single naval mortar with a limited magazine and slow rate of sustained fire?  Even operated in groups it’s a limited firepower capability unless used in groups of hundreds.  Further, the rounds have limited destructive effects due to small warhead.
 
Consider that an amphibious assault operation requires many thousands of rounds of heavy naval gunfire in order to provide effective destruction and suppression.  A NEMO boat’s 50-60 rounds just aren’t going to accomplish much in that scenario, even in squadron strength.
 
So, what scenario would a mortar boat be useful for?
 
The only viable scenario is support for an isolated, small ground unit.  This would suggest a miniature raid or extraction type operation.  That’s fine for that scenario but the general usefulness seems quite limited.  A country that conducts a lot of riverine type work, for example, might find a boat mounted mortar useful but the US simply doesn’t do that type of operation anymore.  The wisdom of the elimination of that type of capability is debatable but that’s a different subject.
 
Proponents of mounting land weapons on small vessels are likely caught up in the allure of the technology rather than the reality of the CONOPS.
 
 
 
____________________________